ANIMA: Non-conventional Brain-Computer Interfaces in Robot Control through Electroencephalography and Electrooculography, ARP Module
نویسندگان
چکیده
ANIMA has as a primary objective to compare three non conventional human computer interfaces that comply with the industrial robot ST Robotics R-17 instructions. This module, Alpha Waves Related Potentials -ARPexplains how brain waves are obtained, processed, analyzed and identified depending on their frequency. This module makes use of the Open EEG Project’s open hardware monitor for brain wave activity, called the modular EEG. The brain waves are obtained through an electrode cap complying with the international 10-20 system for electrode positioning. The brain waves are processed with a fast Fourier transform using a microcontroller and analyzed in software identifying the alpha wave’s contribution. A program identifies the amount of time that alpha wave generation was maintained through concentration, and instructions are sent to the robotic arm, executing one of four pre-defined routines. Thirty percent of the users attained control over the robotic arm with the human computer interface.
منابع مشابه
Selecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملThe Self-Paced Graz Brain-Computer Interface: Methods and Applications
We present the self-paced 3-class Graz brain-computer interface (BCI) which is based on the detection of sensorimotor electroencephalogram (EEG) rhythms induced by motor imagery. Self-paced operation means that the BCI is able to determine whether the ongoing brain activity is intended as control signal (intentional control) or not (non-control state). The presented system is able to automatica...
متن کاملA Novel Neural Network Classifier for Brain Computer Interface
Brain computer interfaces (BCI) provides a non-muscular channel for controlling a device through electroencephalographic signals to perform different tasks. The BCI system records the Electro-encephalography (EEG) and detects specific patterns that initiate control commands of the device. The efficiency of the BCI depends upon the methods used to process the brain signals and classify various p...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کامل